Key role of 15-LO/15-HETE in angiogenesis and functional recovery in later stages of post-stroke mice

نویسندگان

  • Di Wang
  • Yu Liu
  • Li Chen
  • Pengyan Li
  • Youyang Qu
  • Yanmei Zhu
  • Yulan Zhu
چکیده

This study sought to clarify the effects of 15-lipoxygenase/15-hydroxyeicosatetraenoic acid in angiogenesis and neurological functional recovery after cerebral ischaemic stroke in mice. In vivo, we performed behavioural tests to determine functional recovery after stroke. Double immunofluorescence staining of CD31 and Ki67/PCNA was performed to evaluate the effects of 15-lipoxygenase/15-hydroxyeicosatetraenoic acid on angiogenesis in an MCAO mouse model. In vitro, we investigated the effects of 15-hydroxyeicosatetraenoic acid on BMVEC proliferation and migration. Our results show that MCAO upregulates 15-lipoxygenase expression in a time-dependent manner, especially in later stages of post-stroke. We confirmed that cerebral infarct area was reduced and neurological dysfunction was gradually attenuated after stroke, while 12/15-lipoxygenase knockout mice exhibited the opposite effects. Furthermore, immunofluorescence studies revealed 15-lipoxygenase increased the proliferation of mouse brain vascular endothelial cells in a time-dependent manner, while 12/15-lipoxygenase knockout blocked these effects. Moreover, 15-hydroxyeicosatetraenoic acid promoted proliferation and tube formation in BMVECs. These results demonstrate positive influence of 15-lipoxygenase/15-hydroxyeicosatetraenoic acid in angiogenesis and neuronal recovery after ischaemic stroke in mice. We also confirmed the PI3K/Akt signalling pathway was necessary for the effects of 15-hydroxyeicosatetraenoic acid in regulation of BMVEC proliferation and migration, which may potentially be a novel target for the recovery from ischaemic stroke.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved survival and reduced vascular permeability by eliminating or blocking 12/15-lipoxygenase in mouse models of acute lung injury (ALI).

Acute lung injury (ALI) is a prevalent disease associated with high mortality. 12/15-lipoxygenase (12/15-LO) is an enzyme producing 12-hydroxyeicosatetraenoic acid (HETE) and 15-HETE from arachidonic acid. To test whether 12/15-LO is involved in increasing vascular permeability in the lung, we investigated the role of 12/15-LO in murine models of LPS-induced pulmonary inflammation and clinicall...

متن کامل

Role of 12/15-lipoxygenase in the expression of MCP-1 in mouse macrophages.

Monocyte chemoattractant protein (MCP)-1 plays a key role in atherosclerosis and inflammation associated with visceral adiposity by inducing mononuclear cell migration. Evidence shows that mouse peritoneal macrophages (MPM) express a 12-lipoxygenase (12/15-LO) that has been clearly linked to accelerated atherosclerosis in mouse models and increased monocyte endothelial interactions in both rode...

متن کامل

12/15-Lipoxygenase gene knockout severely impairs ischemia-induced angiogenesis due to lack of Rac1 farnesylation.

To understand the mechanisms by which 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) activates Rac1 in the induction of angiogenesis, we studied the role of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and αPix. 15(S)-HETE stimulated Rac1 in a sustained manner in human dermal microvascular endothelial cells (HDMVECs). Simvastatin, a potent inhibitor of HMG-CoA reductase, suppresse...

متن کامل

VASCULAR BIOLOGY 12/15-Lipoxygenase gene knockout severely impairs ischemia-induced angiogenesis due to lack of Rac1 farnesylation

To understand the mechanisms by which 15(S)-hydroxyeicosatetraenoic acid (15(S)HETE) activates Rac1 in the induction of angiogenesis, we studied the role of 3-hydroxy-3-methylglutaryl–coenzyme A (HMG-CoA) reductase and Pix. 15(S)-HETE stimulated Rac1 in a sustained manner in human dermal microvascular endothelial cells (HDMVECs). Simvastatin, a potent inhibitor of HMG-CoA reductase, suppressed ...

متن کامل

15(S)-hydroxyeicosatetraenoic acid-induced angiogenesis requires Src-mediated Egr-1-dependent rapid induction of FGF-2 expression.

To understand the mechanisms underlying 15(S)-hydroxyeicosatetraenoic acid [15(S)-HETE]-induced angiogenesis, we studied the role of Egr-1. 15(S)-HETE induced Egr-1 expression in a time-dependent manner in human dermal microvascular endothelial cells (HDMVECs). Blockade of Egr-1 via forced expression of its dominant-negative mutant attenuated 15(S)-HETE-induced HDMVEC migration and tube formati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017